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INTRODUCTION 

IN RECENT years, mixed convection in porous media has 
received increased attention because of its important apph- 
cations in geophysics and energy-related engineering prob- 
lems. Indeed, in many of these applications, a situation 
frequently encountered is the existence of an externally in- 
duced flow. No matter how small it might be, superim- 
position of this forced flow needs consideration, since it 
can affect the flow structure and the total heat transfer 
significantly. 

Recently, extensive numerical results for steady-state 
mixed convection in horizontal porous layers have been pre- 
sented by the authors [I, 21. The interaction between the 
buoyancy effects and forced flow is found to be very com- 
plicated. Introducing a forced flow does not always enhance 
the heat transfer rate. It has been reported that, for Ra > 100, 
there exists a ‘critical’ Peclet number for which the total heat 
transfer is a minimum [l]. It has also been pointed out by 
the authors [2] that steady-state analysis does not always 
lead to a converged solution for the case when the horizontal 
extent of the heat source is greater than three times the layer 
depth for Ra > 100 and Pe & 2. Instead, an oscillation in 
the temperature and flow fields is observed. In order to 
investigate this phenomenon further, a transient analysis is 
required. Therefore, the purposes of the present study are to 
perform a numerical, transient analysis and to investigate 
the origin of instability and the process of the flow transition. 

FORMULATION AND NUMERICAL METHOD 

The geometry is a two-dimensional layer bounded by two 
horizontal impermeable walls through which a flow of uni- 
form velocity and constant temperature is induced (Fig. 1). 
The top wall is kept at a constant temperature while the 
bottom wall other than the heat source is adiabatic. 

Having invoked the Boussinesq approximation, the 
dimensionless governing equations based on Darcy’s law are 
given by [3] 

a>+ a’* Ra CM 
3+(7y2= --1 Pe 6X (1) 

with the corresponding initial and boundary conditions 

0(X, Y, 0) = 0 (3) 

$(X. Y,O) = Y (4) 

$(X, 1, t) = I, 0(X, 1, z) = 0 on the top of the surface 

(5) 
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FIG. 1. A two-dimensional horizontal porous layer with a 
finite heat source. 

+(X,0,?) = 0, 0(X, 0,~) = 1 on the heat source (6a) 

$X,O,r) = 0 
on the bottom surface, 

other than the heat source 
(6b) 

g (X, Y, 5) = 0, FX(X,Y,r) =O forX>>O. (7) 

The dimensionless governing equations, equations (1) and 
(2), are discretized using the control volume approach. The 
convective terms in the energy equation have been approxi- 
mated by the upwind scheme and the time derivative term 
by the forward differences. The stability constraint of the 
successive-substitutive formulation thus obtained is pri- 
marily on the time step as discussed by Jaluria and Torrance 
[4]. For convenience, uniform grids, 376 x 26. have been 
chosen for the present study. As reported in the previous 
study [l], the choice of this grid arrangement gives a very 
satisfactory result. The time step has been carefully chosen 
(Ar = 10e4) such that the stability is guaranteed and accu- 
racy is ensured. It is assumed that a steady state is reached 
when the changes in the stream function and temperature, 
as well as the local heat flux on the top and bottom walls, 
are less than 10m4 in consecutive time steps. 

RESULTS AND DISCUSSION 

The focus of the present study will be on the origin of the 
oscillatory convection in a porous layer for the special case 
of A = 3 since it has been reported that the flow and tem- 
perature fields exhibit an oscillating variation in a regime of 
Ra > 100 and Pe 2 2 [3]. For other cases, detailed discussion 
can be found in ref. (31. 

To reveal the complexity of the interaction between the 
forced flow and buoyancy effects, the temporal variations of 
the flow field are shown in Figs. 2 and 3 for Pe = 0.5 and 5, 
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NOMENCLATURE 

A ratio of the length of the heat source to the 
height of the porous layer, L/H 

A, amplitude of oscillation 
c specific heat of fluid at constant pressure 

[Jkg-‘K’] 

9 acceleration of gravity [m s ‘] 
H height of the porous layer [m] 
h average heat transfer coefficient for the bottom 

surface [Wm-‘Km’1 
K permeability [m2] 
k effective thermal conductivity of the saturated 

porous medium [W rn- ’ K- ‘1 
L length of the heat sources [m] 
Nu overall Nusselt number, hH/k 
Pe Peclet number, U,H/a 
Ra Rayleigh number, KyjI(7’, - T,)H/av 
T temperature [k] 
t time [s] 
II dimensionless velocity in the x-direction. 

u/u, = -@j?Y 
II, uniform velocity of the forced flow [m ss’] 
U velocity in the x-direction [m s ‘1 
V dimensionless velocity in the y-direction, 

V/U” = -i’l&/?X 

1’ velocity in the y-direction [m s- ‘1 
2” dimensjonless distance on the s-axis, s; H 
Y dimensionless distance on the y-axis. y/H. 

Greek symbols 
CI effective thermal diffusivity of the saturated 

porous medium, k/(pc), [m’s ‘1 

P coefficient of thermal expansion [K’] 
porosity 

s dimensionless temperature, (T- T,)/( Th - T,) 
P fluid density [kg m ‘] 
Cr heat capacity ratio of the saturated porous 

medium to that of the fluid, 

b(P~~)l-+ (1 -~:~(PL.~,II~PI.), 
5 dimensionless time, t/(oH’/a) 
zp period of oscillation 

stream function. * 

Subscripts 
C cooled surface 
f fluid phase 
h heated surface 
s solid phase. 

T 

0.10 
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FIG. 2. Flow field for A = 3, Ra = 100 and Pr = 0.5 (Arji = I). 
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FIG. 3. Flow field for A = 3. Ra = 100 and Pe = 5 (A$ = 0.1). 

respectively. At a small Peclet number, the flow and tem- 
perature fields are expected to retain the characteristics of 
natural convection. However, it is interesting to see that. 
initially, three pairs of recirculating cells are generated (Fig. 
2). As reported for steady-state natural convection [5, 61, 
only two pairs of cells can exist in a stable condition, with 
each inner cell having an aspect ratio of 0.8. Therefore, it is 
suspected that the multicellular convection generated in this 
early stage is unstable. Indeed, as time proceeds, the 
additional pair of recirculating cells is swept away by the 
forced flow, leaving only two pairs of cells in the flow field. 

As the Peclet number increases (PC = 5), the strength of 
the forced flow becomes stronger, the third pair of cells is 
swept downstream long before their formation is completed 
(Fig. 3), and the remaining two pairs of cells are not stable. 
A periodic variation starts with the destruction of the second 
inner cell which is forced downstream by the primary flow, 
followed by the decomposition of the first cell and recom- 
bination of the inner cell and the downstream cell. At this 
point, the flow field is back to its original status and the 
process is repeated again with a period of about 0.5 dimen- 
sionless time units. It is evident that the oscillation of the 
flow field is primarily due to this periodic process of cell 
destruction and regeneration. It is interesting to point out 
that the periodic variation of the flow field reported here has 
also been observed in experiments 171. 

For natural convection, Horne and O’Sullivan [K, 91 have 
reported how instabilities in horizontal layers partially 
heated from below. They concluded that the disturbances 
result from a combination of cyclic triggering by predecessor 
cells which circulate around the domain and instability in 
the thermal boundary layer on the heated surface. However, 
in the present case, the disturbances once generated are 
forced downstream by the external flow, which greatly mini- 
mizes the triggering process of their circulation predecessors. 
Therefore, it can be concluded that the only mechanism for 
the oscillatory convection is the instability of the thermal 
boundary layer. While buoyancy effects tend to thicken the 
thermal boundary layer, the forced flow suppresses it. With 
the presence of the upper wall, this interaction is reinforced. 

An overall Nusselt number can be defined based on the 
average heat transfer coefficient and is given by 

(8) 

which also represents the total heat flux over the heat source. 
The variations of the overall Nusselt number with time are 
presented in Fig. 4 as a function of the Peclet number. It is 
observed that the amplitude and period of the oscillation 
become smaller as the Peclet number increases. For Pe 2 18, 
the flow and temperature fields stabilize again. It is at this 



Technical Notes 

51 I 
0 0.5 ID 1.5 29 

T 

51 
0 a5 1.0 15 242 

-c 

(dl 

T 

FIG. 4. Variation of overall Nusselt number with time. for A = 3 

point that the forced flow completely dominates the buoy- 
ancy effects. It is also interesting to note that for PC = 10, 
the flow field is unstable. However, a steady-state solution 1. 
has been reported in the previous study for this case [2]. It 
seems to contradict what we obtain here. A close examination 
of the temporal variations of the flow and temperature fields 2. 
reveals that the solution we obtained earlier is a quasi-steady- 
state solution. Since the convergence criterion has been 
placed on the variations of the stream function and tem- 
perature, in some instances when the flow and temperature 
fields vary slowly, this conditjon can be met and the result is 3. 
mistaken for the steady state. This can occur over some 
intervals when the changes in the variables are very small as 
shown in Fig. 4. 

Upon correlating the numerical results, the period of oscil- 4. 
lation as a function of Peclet number is 

r P = 2.4 1 pc 1.04h (‘)) 5. 

while the amplitude is given by 6. 
In summary, numerical results have been presented for 

transient mixed convection over a horizontal porous layer 
with localized heating from below. For a small Peclet number 
(Pe < l), the flow and temperature fields are stable, while for 7. 
a larger Peclet number (Pe > I), they exhibit an oscillatory 
variation due to the complicated interaction between the 
forced flow and the buoyancy effects. The period of the 
oscillation is found to be a function of the Peclet number. X. 
Flow and temperature fields stabilize again when the forced 
flow completely suppresses the buoyancy effects. 
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